From a Small Startup to a Data-Rich Dream Job: My Journey as a Bioinformatics Data Scientist

Author: Yael Silberberg, VP Data Science, Lynx.MD

Overcoming the Challenges of Traditional Data

As a bioinformatics data scientist, I’ve spent years in the trenches of medical research. One of them was working at a small startup that aimed to find the best treatments for cancer based on biopsy results. In that role, the process was meticulous and slow—each study required us to carefully design a protocol, recruit patients with specific indications, and wait for months to determine whether the treatment was effective. We collected data painstakingly, one patient at a time, over long periods. This is still the case for many diagnostic startups and even large pharmaceutical companies, where every new patient adds a valuable data point, but progress is often measured in small, incremental steps.

A Paradigm Shift: The Power of Pre-Existing Data

When I moved to my new role, the first thing that blew my mind was the sheer volume and accessibility of the data. All the information we had slowly accumulated in my previous job—biopsy images, treatment plans, patient responses—was already here, waiting to be analyzed. And not just for a few patients, but for thousands, across a wide range of indications. It felt like stepping into a researcher’s dream.

While retrospective data should never fully replace the rigor of prospective data, where hypotheses are tested in real time, the ability to rapidly generate and test new hypotheses using pre-existing data is a game-changer. Instead of waiting for months or years to gather enough data to draw meaningful conclusions, I can now leverage vast datasets that span different providers, countries, indications, and populations. The potential to validate findings across multiple datasets, in a fraction of the time it would take in a traditional research setting, is nothing short of revolutionary.

The Impact on Medical Research

This transition has opened my eyes to the incredible possibilities that come with having access to such rich, diverse datasets. Here are just a few ways in which this data is transforming the research landscape:

  1. Accelerating Hypothesis Generation and Testing: In the traditional research model, formulating and testing a hypothesis could take years. With the data now at our disposal, hypotheses can be generated and tested almost as quickly as we can code. This rapid iteration process allows us to explore a wide array of potential treatments and diagnostic markers, refining our understanding at an unprecedented pace.
  2. Enhancing the Power of Retrospective Analysis: While prospective studies remain the gold standard, retrospective analysis using large datasets offers a powerful complement. By analyzing existing data, we can identify patterns and correlations that might not be apparent in smaller studies. Finding new biomarkers that were not even collected in traditional studies. This can inform the design of future prospective studies, making them more focused and effective.
  3. Validating Across Diverse Populations: One of the biggest challenges in medical research is ensuring that findings are applicable across different populations and centers. With access to data from multiple providers and countries, we can validate our hypotheses in diverse patient populations. This not only increases the robustness of our findings but also ensures that treatments are more universally effective.
  4. Streamlining Phase 4 Clinical Studies: Traditionally, Phase 4 clinical studies, which assess the long-term side effects of new drugs, are lengthy and resource-intensive. By leveraging existing data, we can conduct these studies more efficiently, monitoring patient outcomes over extended periods and identifying long-term adverse effects more quickly and without opening a new study, only by analyzing the data that is collected anyway in the clinics .

Challenges and Opportunities

Of course, there are many challenges that come with working with such vast datasets. Data quality, integration across different sources, and ensuring patient privacy are just a few of the hurdles we face. However, these challenges are far outweighed by the opportunities. Having access to this data is the dream of any researcher, offering a chance to make meaningful discoveries that can transform patient care.

The Dream of Every Researcher Reflecting on my journey from a small startup to my current role, I can’t help but feel a sense of excitement and possibility. The transition has not only expanded my access to data but has also broadened my perspective on what’s possible in medical research. The ability to work with such a rich, diverse dataset is something I could only dream of in my previous roles, and I am eager to see how this data will continue to drive innovation and improve patient outcomes in the years to come.

About the Author

In addition to her work with Lynx.MD, Yael is also the Director of Computational Biology at Point6 Bio, where she has been leading research since March 2024. With over a decade of experience in data science and bioinformatics, Yael has held senior roles at Pyxis Diagnostics, including VP of Data Science, and at BiomX Ltd, where she served as Head of Data Science. Her expertise spans big data analytics, computational biology, and bioinformatics, honed through her academic journey at Tel Aviv University, where she earned a PhD in Bioinformatics.

Explore how Lynx.MD’s AI-powered platform can revolutionize your approach to life science research. Contact us today to learn more about our data resources and industry-leading platform.

About Lynx.MD

Lynx.MD offers a secure, SaaS medical intelligence platform for sharing real-world clinical data, accelerating research and development, and providing transformative analytics. With the Lynx Trusted Data Environment (TDE), organizations can collaborate with internal and external developers, data scientists, and researchers to build the next generation of data-informed applications, therapies and care options.

Claims Generate Claims. Lynx.MD Generates Answers.

Author: Lynx.MD

Real-World Evidence For MedTech and Life Sciences

The post-FDA approval environment is undergoing a transformative shift, driven by the increasing importance of real-world evidence (RWE). While randomized controlled trials (RCTs) have been foundational in drug and device development, their limitations in capturing real-world patient experiences have become increasingly apparent. RWE, derived from real-world healthcare data, offers a vital perspective on product performance in the market, empowering medical affairs and market access teams to make informed decisions that benefit patients.

To fully realize the potential of RWE, it is essential to look beyond traditional structured data sources. While valuable, structured data such as electronic health records (EHRs) and claims databases often fall short of capturing the nuances of real-world clinical practice. The untapped wealth of unstructured data, including clinical notes, imaging reports, and patient-generated health data, holds the key to unlocking a deeper understanding on how well therapies perform after receiving FDA approval and in-market.

Here’s how RWE unlocks this potential:

Beyond Structured Data: The Power of Unstructured RWE

Unstructured data offers a rich, narrative-based perspective on patient experiences, treatment decisions, and outcomes. By leveraging advanced analytics and natural language processing (NLP), organizations can extract valuable insights that are often hidden within the text of clinical records. These insights can be used to:

  • Enhance Product Understanding: Unstructured data provides a deeper understanding of how products are used in real-world settings, including off-label use, treatment patterns, and patient adherence.
  • Identify Safety Signals: Early detection of adverse events can be facilitated by analyzing unstructured data for patterns and trends.
  • Inform Product Development: By understanding patient experiences and unmet needs, companies can identify opportunities for product improvement and innovation.

Driving Market Access and Medical Affairs Success

For market access teams, unstructured RWE can be used to:

  • Develop Compelling Value Propositions: Demonstrate real-world effectiveness and impact on cost of care to build robust value propositions for payers and healthcare providers. Uncover evidence of improved patient outcomes, quality of life, and resource utilization to differentiate the product.
  • Optimize Pricing and Reimbursement Strategies: Inform pricing and reimbursement strategies by demonstrating the product’s real-world value and impact on cost of care. Utilize unstructured data to quantify cost-effectiveness and support negotiations with payers.

Medical affairs teams can leverage unstructured RWE to:

  • Enhance scientific understanding: Delve deeper into product mechanisms of action, safety profiles, and real-world effectiveness through in-depth analysis of unstructured data.
  • Inform medical strategy: Identify emerging trends, unmet medical needs, and opportunities for clinical development by analyzing real-world clinical practice.
  • Support evidence generation: Generate high-quality real-world evidence publications to strengthen the product’s scientific foundation and inform healthcare decision-making.
  • Optimize medical communications: Tailor messaging and materials to address healthcare provider needs and concerns based on insights from real-world data.

Overcoming Challenges and Maximizing RWE Potential

To fully realize the benefits of unstructured RWE, organizations must invest in advanced analytics capabilities, data privacy and security measures, and skilled personnel. Collaboration between market access, medical affairs, and data science teams is essential for successful RWE initiatives.

By embracing the power of unstructured data, the pharmaceutical and medical device industries can unlock new opportunities for post-approval success, improve patient outcomes, and strengthen their market positions.

Harnessing the Power of AI and Machine Learning 

While unstructured data offers a goldmine of insights, manually analyzing it can be time-consuming and resource-intensive. This is where the Lynx.MD platform comes in. With Lynx.MD artificial intelligence (AI), natural language processing (NLP), and computer vision, deep insights can be extrapolated efficiently from complex data sources. 

  • AI and NLP can automate the extraction of key data points from unstructured sources like physician notes, PDFs, procedure/pathology reports, and patient surveys. This data can then be used to build robust value propositions for payers and healthcare providers. Imagine AI automatically highlighting sections of clinical notes that discuss improved patient outcomes or cost savings, or pathology finding, empowering teams to focus their efforts on these impactful areas.
    • In a recent Lynx.MD use case, a drug manufacturer needed to identify patient care flow and unmet needs using information that could only be obtained from clinical notes. Lynx.MD’s AI was able to determine whether specific assessments were performed and what factors led to drug switches, providing crucial insights for the manufacturer’s strategy
  • Computer vision can analyze medical images to quantify disease progression and assess treatment efficacy in real-world settings. This data can be used to support product claims and demonstrate real-world value.
    • Lynx.MD’s AI and computer vision has been instrumental in gastrointestinal health care. Analyzing colonoscopy imaging and associated reports to detect adenomas can only be done effectively with AI and computer vision. Lynx.MD’s advanced algorithms can extract these critical insights, enabling researchers to improve early detection rates and treatment outcomes

The Future of Medical Affairs and Market Access

The future of healthcare hinges on understanding the real-world impact of treatments. By harnessing the combined power of traditional data, rich patient experiences, and cutting-edge AI, medical affairs and market access teams can revolutionize how they assess medical devices and therapies.

Lynx.MD leverages advanced AI/ML and Computer Vision to break down data silos by providing a comprehensive platform that captures the full patient experience through both structured and unstructured data. This empowers medical affairs and market access teams to accelerate the delivery of life-changing treatments while optimizing for patient care.

Explore how Lynx.MD’s AI-powered platform can revolutionize your approach to life science research. Contact us today to learn more about our data resources and industry-leading platform.

About Lynx.MD

Lynx.MD offers a secure, SaaS medical intelligence platform for sharing real-world clinical data, accelerating research and development, and providing transformative analytics. With the Lynx Trusted Data Environment (TDE), organizations can collaborate with internal and external developers, data scientists, and researchers to build the next generation of data-informed applications, therapies and care options.